ASSE International
Product (Seal) Listing Program
FACTORY AUDIT INSPECTION TEST REPORT
ASSE 1062-2017
Temperature Actuated, Flow Reduction (TAFR) Valves for Individual Supply Fittings

Manufacturer: __
Contact Person: ___________________________ E-mail: ________________________________
Address: ___
Laboratory: ___________________________ Laboratory File Number: _________________
Model # Tested: __
Model Size: ________________________________
Additional models report applies to: __
Additional Model Information (i.e. orientation, series, end connections, shut-off valves)

Date models received by laboratory: ______________ Date testing began: ______________
Date testing was completed: ___
If models were damaged during shipment, describe damages: _______________________
Prototype or production sample? __
Were all tests performed at the selected laboratory? ☐ Yes ☐ No
If offsite, identify location: ___

General information and instructions for the testing engineer:
The results within this report apply only to the models listed above.

There may be items for which the judgment of the test engineer will be involved. Should there be a question of compliance
with that provision of the standard, a conference with the manufacturer should be arranged to enable a satisfactory
solution of the question.

Should disagreement persist and compliance remain in question by the test agency, the agency shall, if the product is in
compliance with all other requirements of the standard, file a complete report on the questionable items together with the
test report, for evaluation by the ASSE Seal Control Board. The Seal Control Board will then review and rule on the
question of compliance with the intent of the standard then involved.

Documentation of material compliance must be furnished by the manufacturer. The manufacturer shall furnish to the
testing agency, a bill of material which clearly identifies the material of each part included in the product construction. This
identification must include any standards which relate thereto.
Section III

3.0 Performance Requirements and Compliance Testing

3.1 Hydrostatic Pressure Test
What inlet supply pressure was used for this test? _____psi (_____kPa)

Note: The pressure shall be twice the manufacturer's rated working pressure or twice the working pressure noted in the standard (whichever is greater).

What was the water temperature? _____°F (_____°C)

The test period was for _____ minutes.

Was there any indication of leakage or evidence of damage? ☐ Yes ☐ No

In compliance? ☐ Yes ☐ No

3.2 Deterioration at Extremes of Manufacturer's Temperature and Pressure
What water temperature was used for this test? _____°F (_____°C)

What water pressure was used for this test? _____psi (_____kPa)

The test period was for _____ minutes.

Was there any indication of leakage or evidence of damage? ☐ Yes ☐ No

In compliance? ☐ Yes ☐ No

3.4 TAFR Reduction and Reset Test
(See Table 1 for type of fixture supply and flow rates)

3.4.2 Was the mixing valve in the test set-up capable of making temperature changes within five (5) seconds? ☐ Yes ☐ No

(a) At an initial water temperature of 104.0°F ± 5.0°F (40.0°C ± 2.8°C):

What was the adjusted flow rate before reduction? _____GPM (_____L/min)

(b) After the inlet water temperature stabilizes at 104.0°F ± 5.0°F (40.0°C ± 2.8°C) reset the mixing valve to 135.0°F (57.2°C) within five (5) seconds.

What was the water temperature at the inlet of the device on test _____°F (_____°C)

What was the supply pressure? _____psi (_____kPa)

When the temperature reaches 120.0°F (48.9°C) record the time it took for the flow to reduce to 0.25 GPM (1.0 L/min) per table 1. _____ seconds

What was the supply pressure after flow reduction? _____ psi (_____kPa)

(c) With the inlet temperature at 135.0°F ± 5.0°F (57.2°C ± 2.8°C), reset the mixing valve to 90.0°F (32.2°C) within five (5) seconds. When the temperature reaches 90.0°F + 5.0°F/-0°F (32.2°C + 2.8°C/-0°C) record the time elapsed for the device to automatically or manually reset. _____ seconds.
(d) After the inlet water temperature stabilizes at 104.0°F ± 5.0°F (40.0°C ± 2.8°C) reset the mixing valve to 125.0°F (51.7°C) within five (5) seconds. [Repeat tests 3.4(b) and (c) using 125.0°F (51.7°C) as the basis.]

What was the water temperature at the inlet of the device on test? _____ °F (_____ °C)

What was the supply pressure? _____ psi (_____ kPa)

When the temperature reaches 120.0°F (48.9°C), record the time it took for the flow to reduce to 0.25 GPM (1.0 L/min) per Table 1. _____ seconds

What was the supply pressure after flow reduction? _____ psi (_____ kPa)

With the inlet temperature at 125.0°F ± 5.0°F (51.7°C ± 3.0°C), reset the mixing valve to 90.0°F (32.2°C) within five (5) seconds. When the temperature reaches 90.0°F +5.0°F/-0°F (32.2°C + 2.8°C/-0°C) record the time elapsed for the device to automatically or manually reset. _____ seconds

(e) After the inlet water temperature stabilizes at 104.0°F ± 5.0°F (40.0°C ± 2.8°C) reset the mixing valve to 130.0°F (54.4°C) within five (5) seconds. [Repeat tests 3.4(b) and (c) using the 130.0°F (54.4°C) as the basis.]

What was the temperature at the inlet of the device on test? _____ °F (_____ °C)

What was the supply pressure? _____ GPM (_____ L/min)

When the temperature reaches 120.0°F (48.9°C), record the time it took for the flow to reduce to 0.25 GPM (1.0 L/min) per Table 1. _____ seconds

What was the supply pressure after flow reduction? _____ psi (_____ kPa)

With the inlet temperature at 130.0°F ± 5.0°F (54.4°C ± 3.0°C), reset the mixing valve to 90.0°F (32.2°C) within five (5) seconds. When the temperature reaches 90.0°F +5.0°F/-0°F (32.2°C + 2.8°C/-0°C), record the time elapsed for the device to automatically or manually reset. _____ seconds

(f) After the inlet water temperature stabilizes at 104.0°F ± 5.0°F (40.0°C ± 2.8°C) reset the mixing valve to 140.0°F (60.0°C) within five (5) seconds. [Repeat tests 3.4(b) and (c) using 140.0°F (60.0°C) as the basis]

What was the temperature at the inlet of the device on test? _____ °F (_____ °C)

What was the supply pressure? _____ GPM (_____ L/min)

When the temperature reaches 120.0°F (48.9°C), record the time it took for the flow to reduce to 0.25 GPM (1.0 L/min) per Table 1. _____ seconds

What was the supply pressure after flow reduction? _____ psi _____ kPa

With the inlet temperature at 140.0°F ± 5.0°F (60.0°C ± 3°C), reset the mixing valve to 90.0°F (32.2°C) within five (5) seconds. When the temperature reaches 90.0°F + 5.0°F/-0°F (32.2°C + 2.8°C/-0°C) record the time elapsed for the device to automatically or manually reset. _____ seconds

3.4.3 Did the device automatically reduce the discharge flow as indicated in Table 1 within five (5) seconds after the water temperature at the inlet exceeded 120.0°F (48.9°C)?

☐ Yes ☐ No
Did the device automatically or manually reset to full flow within ten (10) seconds after the inlet water temperature was reduced to 90.0°F + 5.0°F/-0°F (32.2°C + 2.8°C/-0°C)?

☐ Yes ☐ No

In compliance? ☐ Yes ☐ No

WAS THE DEVICE IN COMPLETE COMPLIANCE WITH ALL THE TEST CRITERIA OF THIS STANDARD?

☐ Yes ☐ No
LISTED LABORATORY: ___
ADDRESS: ___
PHONE: ______________________ FAX: ___
TEST ENGINEER(S): ___

If applicable:
OUTSOURCED LABORATORY: __
ADDRESS: ___
PHONE: ______________________ FAX: ___
TEST ENGINEER(S): ___
Scope of outsourced testing: __

We certify that the evaluations are based on our best judgments and that the test data recorded is an accurate record of the performance of the device on test.

Signature of the official of the listed laboratory: __________________________ Signature

Title of the official: ___ Date: ______________