Cross Connection Protection Devices

by Shannon M. Corcoran
ASSE Executive Director, Westlake, Ohio

Four questions to ask before installing a BFP -
1) Is the application a high hazard or low hazard?
2) Will the device encounter backsiphonage conditions?
3) Will the device encounter backpressure conditions?
4) Will the device be subjected to continuous or intermittent pressures?

In the past twenty years, great strides have been taken to protect our potable water supplies, and ultimately public health, through the advancement of mechanical cross connection protection devices, more commonly referred to as backflow preventers.

An air gap is the most method to the backflow of non-potable water into the potable water system. A properly installed air-gap separation does not allow for the existence of a cross connection in a piping system, as is creates a physical break between the potable water supply and a potential source of contamination or pollution. Unlike the other devices described in this article, and air gap is not a mechanical method of backflow prevention; however, it should be inspected periodically to ensure that the physical separation has not been closed in any manner (i.e.: addition of a hose or additional piping extending the supply outlet to below the flood level rim of the receptor).

Typical installations include lavatories, process tanks, sinks, dishwashers and cooling towers.

The standards for air gaps are the ASME/ANSI A112.1.2, ASME/ANSI A112.1.3 and ASSE Standard #1021.

Anti-Siphon Fill Valves (Ballcocks) for Gravity Water Closet Flush Tanks

Anti-siphon fill valves, formerly referred to as ballcocks, are water supply valves installed to deliver potable water to a water closet flush tank. It includes an integral vacuum breaker, or other approved backflow preventer, or is designed to provide an air gap when installed.

Anti-siphon fill valves are installed in water closet flush tanks and in urinals.

Vacuum Breakers

There are several different classifications of vacuum breakers - atmospheric vacuum breakers, pressure vacuum breakers, hose connection vacuum breakers and spill resistant vacuum breakers.

An atmospheric vacuum breaker (AVB) consists of an air-inlet valve to prevent the siphonage of contaminants or pollutants into the potable water system. Although simple in design, its installation must follow certain guidelines in order to properly function. An AVB must be installed 150 mm (6 inches) above the highest point of downstream usage or elevated piping. It cannot be subjected to any type of backpressure. A control valve or shutoff valves cannot be installed at the outlet.
or downstream of the AVB. It cannot be installed where it will subjected to continuous pressure or supply pressure for periods longer than twelve (12) hours.

An AVB is typically installed in irrigation systems, dishwashers, and soap dispensers.

A pressure vacuum breaker (PVB) have inlet and outlet isolation (shutoff) valves, two test cocks, a check valve force loaded closed, and an air inlet valve force loaded open downstream of the check valve. Like the AVB, a PVB has installation guidelines that must be followed to ensure the proper functioning of the device. A PVB must be installed so that it’s critical installation is a minimum of twelve (12) inches above the highest point of downstream use or piping.

A spill resistant vacuum breaker (SRVB), formerly known as a back siphonage vacuum breaker, consists of one check valve force loaded closed, an air inlet force loaded open to atmosphere downstream of the check valve, two shutoff valves and two test cocks. They cannot be used in installations that are subject to any form of backpressure.

The main differences between these three types of devices is that the PVB and SRVB can be subjected to continuous pressure whereas the AVB cannot be; and the PVB is intended to be installed outside whereas the SRVB is intended to be installed indoors.

A hose connection vacuum breaker wall hydrant, freeze resistant, automatic draining type, a hose connection vacuum breaker, and a hose connection backflow preventer are all devices with hose connections installed downstream of the last control valve. A hose connection vacuum breaker and a hose connection backflow preventer are wall hydrants or sill cocks, that contain an integral vacuum breaker. A hose connection vacuum breaker is a device that can be added onto an existing wall hydrant or sill cock to provide backflow protection. These devices protect against both high and low hazards, low head back pressure and backspiponage situations.

A hose connection vacuum breaker wall hydrant, freeze resistant, automatic draining type contains an integral check valve, an atmospheric vent valve and a means to drain water from the device to prevent damage from freezing. A hose connection backflow preventer contains an integral check valve and an atmospheric vent valve. The hose connection backflow preventer contains two independently acting check valve with an intermediate atmospheric vent between the checks. It also provides a means of draining to prevent damage from freezing. This is the only device of the three that is field testable.

RP’s, RPF’s and RPDA’s

Reduced pressure principle backflow preventer (RP) and reduced pressure principle fire protection backflow preventer (RPF) consist of two independently-acting check valve force loaded closed and separated by an intermediate chamber. The intermediate chamber has a hydraulically operated relief means for venting. The assembly also contains two shutoff valves and test cocks.

A reduced pressure detector fire protection backflow preventer assembly (RPDA) contains, in addition to all of the components of an RP, a bypass line around the second check consisting of a water meter, alarm signalling device, or both, and a second RP device.

An RP device can be used under the most severe conditions, including high health hazard applications (chemically charged fire protection systems, medical equipment, processing tanks, etc.), applications where the device is subject to both backpressure and backspiponage conditions, and continuous pressure applications. An RPDA is primarily used in, although not limited to, high hazard fire sprinkler system applications.

DC’s DCF’s and DCDA’s

Double check backflow prevention assemblies (DC) and double check fire protection backflow prevention assemblies (DCF) consist of two independently acting check valves force loaded closed, two tightly closing shutoff (isolation) valves, and test cocks.

A double check detector fire protection backflow prevention assembly (DCDA) consists of two independently acting check valves force loaded closed, two tightly closing shutoff (isolation) valves, test cocks, and a bypass line around the second check with a water meter and/or signal device and a second DC device.

DC type devices can only be used where the potential health hazard to the potable water is low. In the event that both checks fail, unlike an RP type device, there is no external indication of failure. DC type devices are commonly used in application such as main supply lines, food cookers, and systems that contain nontoxic substances. A DCDA is primarily used in, although not limited to, low hazard fire sprinkler applications.

BFP’s for Carbonated Beverage Dispensers

The purpose of a backflow prevention device on a carbonated beverage machine is to prevent carbon dioxide gas and/or carbonated water from entering the copper piping of a potable water supply, resulting in a potentially danger copper poisoning situation.

A backflow preventer for carbonated beverage machines consists of two check valves and an atmospheric vent. If there is a failure of the downstream check, and the backpressure exceeds the supply pressure, the device’s vent will discharge indicating to the end user that there is a failure.

A dual check valve type backflow preventer for carbonated beverage dispenses - post mix type consists of two independently acting primary check valves force loaded closed.

Dual Check Valve Backflow Preventer

A dual check valve backflow preventer consists of two check valves force loaded closed. These device protect in low hazard applications which are under continuous pressure. Like its cousin for carbonated beverage dispensers, if both check valves should fail, there is no visual indication of the failure.

Backflow Preventer with Intermediate
Atmospheric Vent

The device classified as a backflow preventer with intermediate atmospheric vent contains three internal mechanical components - two check valves force loaded closed and a valve located between the check valves that is designed to automatically vent to atmosphere, thus preventing backflow into the potable water supply from with a backpressure or backsiphonage situation.

These devices can be used in low hazard applications only under continuous pressures where the outlet is subject to either low and atmospheric pressure conditions.

Laboratory Faucet Backflow Preventers

The device classified as a laboratory faucet backflow preventer is defined as a vacuum breaker; however, unlike most vacuum breakers, it contains two check plus a means to vent to atmosphere. This device is designed specifically for installation on a laboratory faucet downstream of the last control valve.

In Closing

Although there are many different types of backflow preventers, each device is designed for specific installation conditions, and should be installed accordingly. The four most questions to ask yourself prior to installing a backflow preventer are:
1) Is the application a high hazard or low hazard?
2) Will the device encounter backsiphonage conditions?
3) Will the device encounter backpressure conditions?
4) Will the device be subjected to continuous or intermittent pressures?

Once you’ve determined the answer to these questions, you can then easily determine which type of backflow preventer best suits your application.

<table>
<thead>
<tr>
<th>Device Type</th>
<th>ASSE Standard</th>
<th>High Hazard</th>
<th>Low Hazard</th>
<th>Backsiphonage</th>
<th>Backpressure</th>
<th>Continuous Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Siphon Fill Valves (Balcocks) for Gravity Water Closet Flush Tanks</td>
<td>1001</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Hose Connection Vacuum Breakers</td>
<td>1011</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>LOW</td>
</tr>
<tr>
<td>Backflow Preventer with Intermediate Atmospheric Vent</td>
<td>1012</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Reduced Pressure Principle Backflow Preventers and Reduced Pressure Principle Fire Protection Backflow Preventers</td>
<td>1013</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies</td>
<td>1015</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Hose Connection Vacuum Breaker Wall Hydrants, Freeze Resistant, Automatic Draining Type</td>
<td>1019</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>LOW</td>
</tr>
<tr>
<td>Vacuum Breakers, Anti-Siphon, Pressure Type</td>
<td>1020</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Drain Air Gaps for Domestic Dishwasher Applications</td>
<td>1021</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Backflow Preventer for Carbonated Beverage Dispensers</td>
<td>1022</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Dual Check Valve Type Backflow Preventers</td>
<td>1024</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Dual Check Valve Type BFP for Carbonated Beverage Dispensers</td>
<td>1032</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Laboratory Faucet Vacuum Breaker</td>
<td>1035</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Reduced Pressure Detector Fire Protection Backflow Preventer Assemblies</td>
<td>1047</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Double Check Detector Fire Protection Backflow Preventer Assemblies</td>
<td>1048</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Hose Connection Backflow Preventers</td>
<td>1052</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>LOW</td>
<td>NO</td>
</tr>
<tr>
<td>Spill Resistant Vacuum Breakers</td>
<td>1056</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Freeze Resistant Sanitary Yard Hydrants with Backflow Protection</td>
<td>1057</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>LOW</td>
<td>NO</td>
</tr>
</tbody>
</table>